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Abstract—In this correspondence the analysis of overall
quantization loss for the Fast Fourier Transform (FFT)
algorithms is extended to the case where the twiddle factor
word length is different from the register word length. First,
a statistical noise model to predict the Quantization error
after the multiplication of two quantized signals, of different
precision, is presented. This model is then applied to FFT
algorithms. Simulation results, that corroborate the
theoretical analysis, are then presented.

Index Terms— DFT (Discrete Fourier Transform), FFT (Fast
Fourier Transform), DIT (Decimation in Time), and
Quantization loss analysis.

I.  INTRODUCTION

The discrete Fourier transforms (DFT) and linear filtering
is among the most fundamental operations in digital signal
processing. The Fast Fourier transform is an algorithm to
efficiently compute the discrete Fourier transform (DFT). It is
a very useful algorithm, playing an important role in various
digital signal processing applications from
telecommunication, image processing, radar, sonar to
vibrational analysis and material analysis and etc. In the actual
hardware design, the accuracy of FFT/IFFT module is an
important design factor of system performance. When it is
implemented on a digital machine, quantization errors will
arise due to the finite word length of the machine. Theoretical
performance evaluation of signal to quantization noise
(SQNR) of different FFT algorithms has been widely reported
in previous works, for example [2]-[21]. All this consider the
twiddle factor bit width to be similar to register bit width, as it
simplifies the analysis. However, in many practical cases like
fixed point DSP processors [1], the input bit widths are not
the same, and the theoretical analysis given by [2]-[21] do
not predict the saturation of the SQNR curve due to the
constant twiddle factor bit width.

In this paper a model of quantization noise for
multiplication when the input registers have different bit
widths is developed first. The output noise of such a multiplier
is then computed. The results are then applied to FFT
algorithms and simulation results are presented to verify the
accuracy of the proposed model
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Figure1. Additive noise model of quantization loss for same bit
width multiplication.

Figure2. Additive noise model of quantization loss for unequal size
bit width multiplication.

The organization of paper is as follows: The multiplier
quantization noise model that takes care of effects of different
bit widths at the inputs is discussed in section II. Application
to FFT algorithms  is discussed in section III. Section IV
gives Simulation results followed by Summary in section V.

II.  GENERALIZED MULTIPLIER MODEL

The additive noise model of quantization loss is widely
adopted to measure the effect of the fixed length operations
in digital signal processing systems [2], [4]. The quantized
product can be expressed as the sum of an unquantized
product and a uniformly distributed additive quantization
noise.

A.  Previous model

If we consider the multiplication of quantized numbers x̂
and â of bit width b, the product ŷ is quantized to (b+1) bits,

so that ][ˆ yQy b .  The variance of this is given in [6] and the
corresponding model is shown in Figure 1.

B. Proposed model

Consider the multiplication of quantized numbers x̂  and

â of a bit widths b1 and b2 respectively. The product ŷ is
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quantized to b3 bits, so that ][ˆ 3 yQy b .
 Each quantized number a, quantized to bit width b, can be
represented as an unquantized number with an additive
quantization noise source e [2], [4] as

                 eaa ˆ                                             (1)

Where e is a uniformly distributed random variable whose
probability density function (pdf) is given in equation (2),

and variance is given by 12
2 2  where

                                                                                                   (2)

The quantized product term can be expressed as the product
of quantized inputs with an additive quantization noise
source, e3, as
              3ˆˆ][ˆ 3 eaxyQy b                       (3)

If                             then using equation (1) to replace quantized x̂ ,

â  by their unquantized values we get

       nxaeeaexy  3)2)(1(ˆ                      (4)

where n = e1a+e2x+e1e2+e3 is the noise term. The
conditional variance of n given x, a is
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For the special case when b1 = b2 = b3 = b, we have
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Denoting 2222 }{,}{ ax aExE  , the variance of n for

different bit width input is given by
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Assuming as in [[2], equation 6.4.7], that x and a are
uncorrelated and have uniform density in the range ),( 11

NN


we have

      Figure 3-Flow-graph of the DIT- FFT algorithm.
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Substituting equation (8) in equation (7), we obtain
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 Figure 2 depicts quantized product term ŷ  as the product of
quantized inputs with an additive quantization noise source
having different bit widths.

III. APPLICATION TO FFT

In this section the generalized multiplier model developed
in previous section is applied to FFT. For this case we assume,
without loss of generality, that x is an input to the FFT, and a

is the twiddle factor. Then variance of a will be 12 a  and
assuming as in [[2], eqn. 6.4.7], that x and a are uncorrelated
and x has uniform density in the range   ),( 11

NN
 , the

variance of noise for each multiplication, given in equation
(7), specializes to

   }2222{
12
1 )21(212222322 bbbb

x
b

n
       

       (10)
A. Error analysis of Radix-2 FFT algorithm

In this subsection we discuss the variance of QE for Radix-
2 FFT algorithm to the case of different register bit width.
From the flow graph of the DIT FFT algorithm given in Figure
3a, it can be seen that the DFT samples are computed by a
series of butterfly computations with a single complex
multiplication per butterfly module. Some of the butterfly
computations require multiplications by - 1 or -j that we do
not treat separately here, to simplify the analysis. From Figure
3a, it is also observed that in general there are N/2 complex
multiplications in first stage, N/4 in the second stage, N/8 in
third stage, and so on, until the last stage, where there is only
one complex multiplication. Following the procedure as in
[2], instead of scaling the input samples by 1/N, we can
distribute the total scaling of 1/N into each of the FFT stages
to avoid overflow i.e. we can scale the input signals at each
stage by 1/2. This scaling reduces the variance of QE as
follows. Each factor of 1/2 reduces the variance of QE by a
factor of 1/4. Thus 4(N/2) QE introduced in first stage will
reduced the variance by (1/4)ν-1, the 4(N/4) in second stage
to (1/4)ν-2 �, and so on, where  is the number of FFT stages.
Hence, the total variance of the QE at the output of FFT
algorithm will be
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which simplifies as [2], we get
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For large values of N, FFT size, this can be approximated as

                        22 8 nq                                        (13)

Due to the scaling the input, the variance of the signal at the

output of FFT will become  NX 3
12   and SQNR is given

by

                                                                                                 (14)

B. Error analysis of Split radix DIT FFT algorithm
In this subsection we consider QE for Split radix FFT

algorithm. From the block diagram as shown in Figure 3b, it is
clear that each butterfly computation invloves 2 complex or 8
real multiplications. The number of butterflies from stage k=2

�to  is given by

3

and the number of Radix-2 butterflies in stage k=1 is
given by

(15)

(16)

As Radix-2 multiplications are all non-trivials, so need not to
be consider for QE analysis. Now the variance of the QE for
this case for the computation of N-point DFT is given as

(17)

which simplifies as [2], we get

(18)

For large values of N, FFT size, this can be approximated as

(19)

QE for the computation of particular split radix FFT output
is

(20)

Equation (20) is the noise variance of split radix DIT FFT
algorithm due to quantization . SQNR for this case is given
by

(21)

Figure 4. SQNR comparison chart of Radix-2DIT FFT algorithm
with fixed twiddle factor (10bits).

IV. COMPARATIVE SIMULATION RESULTS

In order to verify the expression derived in the previous
section, a fixed point simulation of SQNR for different FFT
size is presented. It is assume that the word length of the
internal register is same as that of the output register (b1 =
b3). Figure 4 shows SQNR of Radix-2 DIT FFT algorithms
with the word length of twiddle factor set to 10 bits (b2 = 10),
and the internal word length of fixedpoint FFT is swept from
8 to 18 bits. FFTs of length 64, 256, 512 and 1024 are simulated.
From the figure it can be observed that the simulated SQNR
(denoted by ‘NSim.’ for N-point FFT in Fig. 4) is within 0.5 dB
of theoretical SQNR (denoted by ‘N- Theory’). Similar
simulation for split radix FFT is shown in figure 5. For cross
verification figure 6 plots the SQNR as a function of FFT
length for various values of twiddle factor and internal register
word lengths. It is observed that the theoretical SQNR is
within 0.5 dB of the simulated SQNR. Accordingly, it can be
concluded that the simulation results closely match
theoretical SQNR curves obtained by plotting equation (14).

Figure 3b-Flow-graph of the SRDIT- FFT algorithm
for N=32.
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Figure 5. SQNR comparison chart of Split radix DIT FFT algorithm
with fixed twiddle factor (10bits).

Figure 6. SQNR comparision of Radix-2DIT FFT algorithms with
fixed input (10,12 bits).

V. CONCLUSION

 We have developed a generalized multiplier model and
applied it to derive the signal to quantization noise for FFT,
for the case when twiddle factor word length is different from
register word length. The results obtained are an important
basis for the implementation of the FFT algorithm. Simulation
results indicate that the theoretical analysis agrees closely
with the actual behavior of SQNR.
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